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ABSTRACT

Let p and My be probability measures on a locally convex Hausdorff real
topological linear space E. C.R. Baker [1] posed the problem of characterizing
the absolute continuity of p and Hy by their characteristic functionals.

The aim of this paper is to give an answer to this problem in the case
where p is a Gaussian Radon measure. We shall define a Fourier transform,
establish the inversion formula, and then give a necessary and sufficient
condition for My to be absolutely continuous with respect to u based on the
characteristic functional. As applications, for the convolution MmUY, where
v is a Radon measure on E, we shall give some concrete sufficient conditions

on v for psv << u.



§1.

INTRODUCTION AND NOTATIONS.
Let E be a locally convex Hausdorff real topological linear space, E*
be the topological dual space of E, <x,£> be the canonical bilinear form on
ExE*, B(E) be the Borel field of E, and C(E,E*) be the c-algebra generated by
{<x,E>; EeE*}. Every Radon measure p on (E,B(E)) is uniquely determined by the
characteristic functional
uE) = fee

Therefore a Radon measure My is absolutely continuous with respect to u

YE Nk, EeEr.

(denoted by up << W) on (E,B(E)) if and only if Hy “< )l on (ByCLE;EY) . If Hy
and U are mutually absolutely continuous, we denote it by ul ~ .

Let p be a Gaussian Radon measure on (E,B(E)). Then without loss of
generality we may assume that the mean is zero (C. Borell [3]) and E is the
minimal closed linear subspace of probability 1. Let H be the reproducing
kernel Hilbert space of py with norm |£| and inner product (§£,n). Then H is
separable (H. Sato and Y. Okazaki [6], C. Borell [3]), and, identifying H*
with H, we have E* ¢ H ¢ E, where E* is dense in H. The characteristic functional
of u is (&) = exp[-3€|7].

A subset A of E is called full iff AeB(E) and u(A)=1. A random linear map

T of E to a topological linear space (F,B(F)) is a measurable linear map defined
on a full linear subspace of E. Every random linear map T has an explicit value
on H since H is included in every full linear subspace of E (H. Sato and Y.

Okazaki [6]). A real valued random linear map is called a random linear

functional. 1In §2 we shall show that every &£eH is extended to a random linear
functional denoted by (x,£) and that every finite dimensional orthogonal
projection P of H is extended to a random linear map of E onto PH, which is

again denoted by P.



The collection of all finite dimensional orthogonal projections of H

is denoted by P. A sequence {Pn} in P is called an approximation sequence

iff x = lim an for every xeH and PnH cP_ . H, neN.

n

n+l
The characteristic functional of a Radon measure M, on E is called
p-continuous iff g << u, and p-equivalent iff My~ M. Let ul(g) be a

p-continuous characteristic functional. Then there exists the Radon-Nikodym

dul
aﬁ—(x), a.e.(y), and we have

derivative p(Xx)

{Il(g) E x[ei("’g)p(X)] , &eH,

where Iix[ ] is the mathematical expectation with respect to u in the

variable x. Therefore our problem is reduced to characterize the image of

1
L) = (9L’ )5 0(x)20, a.s. ()}
under the above transformation. However it is more convenient for our

purpose to define the Fourier transform F on Ll(u) by

“ 1 2 "
b = @ = e P 8e001, gen, getlan.

Then our problem is equivalent to characterize the image of Li(u) under F.

In §2 of this paper we prove the Riemann-Lebesgue property for a
p-continuous characteristic functional. In 83 we discuss the tame functionals.
In 84, combining the idea of the '"measurable function" of L. Gross [4] and
the theory of the classical Fourier transform, we establish the inversion
formula for F (Theorem 4), under the assumption of the integrability, give a
necessary and sufficient condition for a continuous functional on H to be
the Fourier image of a p-integrable functional (Theorem 5), give a necessary
and sufficient condition for a functional on H to be a u-continuous charac-
teristic function (Theorem 6), and then give an application to the Wiener

measure (Theorem 7). In §5 we discuss the convolution My = Hxv, where v



is a Radon measure on E. Since p is H-quasi-invariant, uxv << p if v(H)=1.
We give some concrete sufficient conditions on v for p*v << u, including the
case Vv(H)=0.

Throughout the paper every non-negative definite functioml f is assumed
to be normalized, i.e. £(0)=1, except for Lemma 3,4, and every Radon measure
is a probability measure. The measure dA(t) on I{d denotes the modified
Lebesgue measure

/2

_ _ -d
di(t) = dk(tl,tz,...,td) = (2m) dtldtz...dt

4

We also use the following notations.
Lz 2 - 1 2
C(&) = exp-3]£]"1, T(&) = exp[5]E]1,

R= real numbers, ¢ = complex numbers,

lld = d-dimensional Euclidean space,

N = natural numbers, EQO = non-negative integers.

The author wishes to show his hearty thanks to Prof. C.R. Baker who drew
his attention to the problem, Prof. J. Bourgain who gave the proof of Lemma 3,

and Prof. M. Talagrand for valuable discussions.



8i2.

RIEMANN-LEBESGUE PROPERTY

Let Hy be a Radon measure on E and T(ul) be the topology on E*
induced by the convergence in probability My Then, if My << M, T(pl) is weaker
than t(p). On the other hand t(u) is equivalent to the topology of H.
Therefore if W << u,ﬁl(g) is continuous in the topology of H so that extended
to H. In this paper we only consider the non-negative definite continuous
functionals on H.

For every £ in H, since E* is dense in H, there exists a sequence {En}

in E* such that lim |£-En| = 0. Then, since {<x,£n>}neEJ is a Caucy sequence
n

in (W), <x,£n> converges to a real random variable £(x) in T(u). Let

{<x,£n >}keIN be a subsequence which converges almost surely to &(x) and
k

define (x,£) = lim <x,£n >. Then (x,£) is a random linear functional on (E,u).
k k

Therefore the definition of (x,£) depends on the choice of the sequence {{ }
P n,

but it is easy to show that (x,£) is defined uniquely up to p-null sets so
that the distribution of (x,£{) is determined uniquely. (x,£) obeys to a
Gaussian distribution of mean zero and variance |E|2 (denoted by N(O,|E|2)),
and (x,£) and (x,n), &,neH, are independent if and only if (§,n)=0.

For every P in P, let {ek: 1<k<d} be a CONS (complete orthonormal system)

of PH. Then obviously

d
Px = (x,e,)e
kzl k” "k

defines a random linear map of E onto PH. The definition of P depends on
the choice of the CONS but is unique up to p-null sets so that the distri-
bution of Bx is determined uniquely. We denote p again by P and remark
that we have

(x,P) = (Px,PE) = (Px,§)

almost surely on (EXE, uxu).
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Let B(P) be the o-algebra on E generated by {(x,£); & PH}, and for
every approximation sequence {Pn} in P, let XB(Pn) be the o-algebra generated
by %B(Pn). Then for every C(E,E*)-measurable function ¢ on E there exists a
XB(Pn)-measurable function ¢1 such that ¢(x) = ¢1(x), a.s. (). Therefore
it is sufficient to show the absolute continuity on XB(Pn) for an approximation
sequence {Pn} 4 O 2

For every ¢ in Ll(u) and every P in P we denote the conditional expec-
tation with respect to B(P) by

(P9)(x) = E,[$[B(P)].

Let {ek: 1<k<d} be a CONS of PH (so that d is the dimension of PH). Then

there exists a Borel function (P$)*(t) = (P¢>)*(t1,t2,...,td) on Rd such that
(PO)(x) = (POY*((x,01) (X,05) -, (Xrg)) s A.5. ().

THEOREM 1. Let ¢ be in L'(u) and define
38 = E [ o], gen.

Then we have the following.

(1) & is bounded and uniformly continuous on H.

(2) For every approximation sequence {Pn} in P

lin sup [9(8) - (P H(E)] = 0
n &eH

(3) (Riemann-Lebesque property)

lim ¢(&) = 0.
€]+ o

Proof (1) is trivial.
(2) Let {Pn} be an approximation sequence in P. Then Rad = lix[¢|B(Pn)]

converges to ¢ in Ll(u) (J. Neveu [5] Proposition IV-2-3) so that we have



~ —~——
sup [$(8) - (P ¢)(E)]
teH

= sup |E [e"®% 000 - (P 0) (0]
EeH

< E[|60) - (POY)|] >0 asn >+,

(3) For every e>0 by (2) there exists P in P such that sup |$(£) - (Pd) (&)| < %e.
EeH

On the other hand we have

| 8)| = | [e %) (pg) (1)1

|E (" %% (Po)*((x,€))5 (xre,) 5. s (x,e))] ]

C((I-P)g) J(&),

ilt (E,ep)
J() = nge k (POIRE B g gD G, s o ® GIAEE e e

[
il

where I is the identity operator of H, {ek: 1<k<d} is a CONS of PH. Then we

can easily prove that 1im C((I-P)£)J(£) = 0 by the classical Riemann-Lebesgue
LE o0

theorem and the boundedness of C(&) and J(£&).

From now on we denote the integral J(E ) symbolically by

3E) = fer PXPE) pyy (pyyc(Px)dA (Px).
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TAME FUNCTIONALS

A p-measurable functional ¢ = ¢(x) on E is called a tame functional if

there exists P in P such that ¢(x) = ¢(Px), a.s. (), and a functional

Y = P(&) on H is called a tame functional if there exists P in P such that

(&) = Y(PE) for every £eH. It is obvious that every continuous tame functional
on H is extended to a p-measurable tame functional on E.
The following lemma is proved in S. Bochner and K. Chandrasekharan [2],

Theorem 37, 38.

LEMMA 1. Define the classical Fourier transform by

f(a) = f}{dei(a’t)f(t)d)\(t), RS

for f € Ll(ﬂid,dk). Then we have

(1) £(t) = tim [ e T (BN E@yc/en)dra), a.s.(dM).

Y0 I@

(2) In particular if %(a) is dA(a)-integrable, then

£(t) = | de'i(t’“)E(a)dx(a), Ak G
R

On the other hand we have the following lemma.

LEMMA 2. Let ¢ be a p-integrable tame functional on E such that ¢(x) = ¢(Px),

a.s.(u), for a P in P. Then ¢ = Fb has the representation $(£) = $(PE) for

all ¢ iﬂ.H’ and extends to a tame functional on E.

Proof. Assume that ¢ satisfies the hypothesis. Then we have

$(PE) = TP [e* P x)]

cee) E [ P o))

CE)E, (e g ()]

CEE [ o] = §8), Een.

Q.E.D.



For a p-integrable function y we define

Fo) (&) = TEVE [Py, geh.
If ¢ is a tame functional, Fy is also a tame functional on H and can be

extended to a tame functional on E.

THEOREM 2. Let { be a continuous tame functional on H which is p-integrable

on E. Then ¢ is the Fourier transform of a p-integrable tame functional on

E if and only if ¢ = Fy is p-integrable.

Moreover if such ¢ is u-integrable, we have ¢ = F¢.

Proof. Assume that (&) = Y(PE), £cH, for a P in P and ¢ = FY is u-integrable.

Then we have

$(x) = $(Px)
= Te0E [ &Py
= TN E o7 P Py pey]
so that
cPx)o(Px) = E Lo PPy pey

= [e 1 PXPE)y ey pey an (P .

This shows that C(Px)¢(Px) is the classical Fourier inverse transform of
C(PE)Y(PE). If ¢(x) = ¢(Px) is p-integrable, then C(Px)¢(Px) is dA(Px)-integrable
and we have by Lemma 1(2)

ei(Px,PE)

w(PE)C(PE) = [ C(Px)$(Px)dA(Px), a.s.(d)),

so that

Ve = w(PE) = TPEIE, [ (PP g (pay ]

T g [e' *Dopn]
TOE Y] = FO @), as..

The necessity is a simple corollary of Lemma 1.

Q.E.D.



o

We estimate the Fourier transform of some typical tame functionals.

EXAMPLE 1.

~

¢ (x) $(&)

D B 12
o (X5n) S IniT+ai(g,n)

(D , ae€, neH,

2y &M EmHn®

N
) m"  i"h ((E,m),  meH, Inl=l, neNg,
-N n
(9 b ((x,m), i€, nel, Inl=1, nelNy,
2 2
5 S
n2d "2
where hn(s) = (-1) e :l—sie » nelNj.

The proof of the following lemma was given by a personal communication

from J. Bourgain.

LEMMA 3.

Let v be a finite measure on Ig which is singular to dA. Then we have

d

lim (e)-ihj dC(§£§§dv(s) =0, a.s. (dA(t)).
>0 R Ve

Proof. Without loss of generality we may assume that v is a probability

measure. Since v is singular to dA, there exists a Borel subset N of Bld

such that A(N) = 0 and v(N) = 1.

For every e>0 define
d

2 s-t
(e) fmdccﬁ.—)dv(s)

£.(t)

d
(e) ° \eEav(s), teRrY,

and for every &>0

A= A(S) = {telzd; lim sup £ (t) = &}.
e~>0 .
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Then for every t in A there exists a sequence of positive numbers

E

K = Ek(t) + 0 and fek(t) > 8 for all keN.

Fix any t in A and any >0, and define

B, = {se]?; 2ke < ls—tI2 < 2(k+1)e}, keB@O.

Then we have

s-t
/E:dfe(t) = E kaC(FE—-)d\)(s) > /els
so that

K-

sved < ¥ e u(B
k

Let 2=%(e) be the minimal number in IQO greater than l-log § - %-1og €
e-1
- log 55 Then we have

-2
i e-k . = iE -%/E d,
k=2 l-e
so that
sved < Y e—kv(Bk)
k
<) e-kv(Bk) ) ek
k<§ k=2
g ¥ e'k\)(Bk) + g— /e,
k<%
and

) e_kv(Bk) -8 /A

2
k<&
Define L = Ve/(/e-1) = Z e and M = G/Ed/ZL. Then there exists
k=0
k(e) < £ = 2(€) such that v(Bk(E)) > Me R In fact assume the contrary.
k
Z

Then for every k<% we have v(Bk) < Me” so that
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k
) e-kv(Bk) < Je M
k<% k<g
< i §£§é = % /e,
2L

which is a contradiction.

Define for every k20
D, = {se]?; |s—t|2 < 2(k+1)el.

Then we have A(Dk) = y/(k+1)e , where Yy is a positive constant independent of

t, € and k, so that

v(che)) > V(B e)) 2 A /Ed.

Since k
7 d
g = ing 22 Tamay? > g,
>0 2L /
we have

VD () 2 By/TKFTyES = BA(D, ¢y) -

On the other hand, we have k(g) < 2(g) = 2 - log 6§ - %-log € - log %él
so that
A(Dk(e)) = vW/(k(e)+1)e

< yW((e)+l)e -> 0 as € =+ 0.

Thus we have proved that for every t in A and every r>0 there exists a
closed ball D with center t and radius less than r such that v(D) 2 BA(D).

Assume that b = A(A) > 0. Then there exists a compact subset K of N
B
2

we can choose a sequence {Dn} of closed balls such that

such that v(K) 21 - = b and we have A(K) < A(N) = 0. Define A' = A\K. Then

gDn >A', D nK=20, Dk n D2 = Pp(K=2), k,ReN.

k
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Then we have

V(A') = V(N n gDn) = v(gDn)

2 BA(YD ) = B{A(gDn) + A(K)}

> BA(A) = Bb.

On the other hand, by the assumption we have v(K) 2 1 - % Bb so that

V(A) V(A') + v(K)

v

1
Bb"'l--z—Bb

1
1+?Bb>1.

This 1s a contradiction.

Thus we have proved that A(A(S)) 0 for every &>0, which implies

A(teIRd: I%m sup fe(t) > 0)

1
[e»)

Q.E.D.

As an application of Lemma 3 we have the following lemma.

LEMMA 4.

Let f = f(a) be a complex valued function on H{d. Then there exists a

non-negative A-integrable function p gg_ﬂld such that

fa) = [ e ety Gelt

.

if and only if f is non-negative definite continuous and

-i(t,a)

£y = [ qdA(t) 1im [ e £ (0)C(Vea)dA (o).

R >0
Proof. The necessity is evident from Lemma 1. We shall prove the sufficiency.
Assume that f satisfies the hypothesis. Then by the Bochner's theorem
there exists a finite measure m on Ig such that

£(a) = fRdei(a’t)dm(t), aeR Y.
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Let dm(t) = p(t)dA(t) + dv(t) be the Lebesgue decomposition of m where v

is singular to dA. Then we have

f@) = [t @ Dpyan(e) + [ ®Bav(r) = £100) + £,(0)

and by Lemma 1

p(t) = lim [e! (8% g ()c(/Endr(@), a.s. (@r().
g0

On the other hand by Lemma 3, since v is singular to A, we have

lim

e~>0 J'Rde

s 8w | ARy = 0, s, QUEY.
€ qu Ve

L6 e (@)c(ven)dh (o

Therefore we have

p(t) = lin Jer M go)c(/Ea)dh(a), a.s. dr(t).
&

Furthermore we have

d d
V(R + [ p(0)dr(t) = m(RE) = £(0) = [ p(t)dr ()
J 4 I 4

so that v = 0. Q-E.D;
Now we can give a characterization of a u-continuous characteristic
functional in the case of tame functionals.

For a p-measurable functional y on E and P in P define

) 00 = Lim T E [ PPy peyc/epe))

e+0
if it has a meaning. In particular if y(P§) is u-integrable, then we have

Fpp) () = TR E [ PPy o).

THEOREM 3. Let ¢ be a tame functional on H such that y(§) = Y(PE) for a P in P.

Then £(£) = C(£)Y(E) is a u-continuous characteristic functional if and only

if f(£) is non-negative definite continuous on H (so that Fbw is well-defined)

and we have Bix[(Fbw)(x)] = 1.
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And then (fbw)(x) is the Radon-Nikodym derivative.

Proof. Assume that | satisfies the hypothesis. Then we have

(Fa) ) = 1in S E o7 PPy coeye/eve )
e+0

-1(Px,PE)

lim C(Px) fe
€

1im €Px) fe F(PXPE) g peyc(/EPE) AN (PE) .
€

Y (PE)C(PE)C(VEPE)dA (PE)

Since f(Pf) satisfies the hypothesis of Lemma 4 we have
£pg) = fe! PPE)(F 4y ycpayar(pn)
=k [ POPI 0]

On the other hand by the definition we have (?bW)(x) = (Fbw)(Px), a.s. (1),

so that

£(E) = C((I-P)E)E(PE)

i(Px,PE)

C((I-P)E)E [e (Fp¥) (Px)]
- E [ 09 F ]

The necessity is also proved in the same manner.

Q.E.D.
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GENERAL INVERSION FORMULA

THEOREM 4 (Inversion formula). Let ¢ be a u-integrable function on E.

Then for an arbitrary approximation sequence {Pn} in P we have

Fpncp = E[¢|B(P )] , neN.

Therefore fb $ converges to ¢ simultaneously in Ll(u) and almost surely.

n

Proof. By the definition we have

F, $)(x)
Pn

—i(an,P £) .

= lin C(P ) E [e "g(P EXC(YEP £)]
>0
o 1R %P L) i(y,PE)
= 112 CPE[e CPOE e ¢ (y)1C(VeP £)]
[Sheg
-i(P_x,P &) i(P_y,P &)
. = n n’>’— n n
= 1;m C(P X)E [e C(PE)E e g [e[B(P D1IC(EP B)]
~3(P_3P_E) 1Py sPE)

- 1gm Cp . x) fe 2 C(/EP E)AA(P E) [e S (P_9) (P Y)C(P y)dA (P y)

= (P_9) (P x)

lsx[¢|B(pn)], 260

by Lemma 1. Q.E.D.

THEOREM 5. Let ¢ be a continuous functional on H such that w(PnE), neN ,

are p-integrable for an approximation sequence {Pn} in P. Then there exists

a u-integrable function ¢ such that ¢ = F¢ if and only if Fb ¥, neN,
n
are u-integrable and converge to ¢ in Ll(u).

Proof. Assume { satisfies the hypothesis so that fb wn converges to a
n

u-integrable function ¢ in Ll(U). Then we have for every & in H
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1(x,£)

(F$) (&) = CEIE [e 0 (x)]
= 1in TEE [ P F, v) 0]
n n
= lim Ffb D
n n

Since (?b V)(x) = (F, ¥) (P, x), a.s. (u), by Theorem 2 we have
n n

Y(PE) = Ffbnw > Y(£) as n > ®, EeH.

The necessity was proved in Theorem 4.
QE D

Before stating Lemma 5, we remark that by the continuous injection of
E into (E*)a, the algebraic dual of E* with the weak topology 0((E*)a,E*),
pu is extended to a Gaussian Radon measure p on (E*)a. On the other hand,
every non-negative definite continuous functional f on H uniquely defines a
probability measure Gf on ((E*)a,C((E*)a,E*)) such that f is the characteristic
function of Gf. Then it is easy to show that f is a p-continuous charac-

teristic functional on H if and only if Vg << W on ((E*)a,C((E*)a,E*)).

LEMMA 5. Let f be a non-negative definite continuous functional on H,

Gf be the corresponding probability measure on ((E*)a,C((E*)a,E*)) and {Pn}

be an arbitrary approximation sequence in P. Then if Gf is singular to u

on C((E*)?,E*), then (fb ¥) (x) converges to zero almost surely (u), so that
n

almost surely (u), where Y(£) = C(§)f(E), &eH.

Proof. Since E is a p-measurable full set in (E*)a, random linear maps on E
are naturally extended to (E*)a. Denote the o-algebra on (E*)a generated by
{(x,€); EeP H} by Bﬁ, vB by B_, the restriction of V. to Eh by v_, and the
restriction of § to Eﬁ by ﬁh, respectively. Then for every C((E*)2,E*)-mea-

: a . .
surable function ¢ on (E*)  there exists a B_-measurable function ¢1 such

that ¢=¢, a.s. () -
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Let
Un(A) = prn(x)dﬁn(x) + 6n(A), Aeﬁn, 1<n<+,

be the Lebesque decomposition of 35 with respect to ﬁh so that 55 is singular
to ﬁh. Since {gh} is increasing, by J. Neveu [5] Proposition III-2-7 {p }

is a non-negative supermartingale so that Pn converges almost surely (u) to
p,- On the other hand 3? is singular to u so we have p_ = 0, a.s. (1).

On the other hand we have

i(x,P &) _ i(x,P &) _
fe p,(x)du_(x) + fe do_ (x)

It

£(P_£)

fl(PnE‘) ! fz(PnE), EeH,

so that by the proof of Lemma 4 we have

Fp ¥y = Pp(X), aus.(up),

0, a.s. (u),

where we define Cf. and = Cf.. Therefore we have
1 1 2

2

lim Fp Y = lim Fp b * lim Fp

wZ
n n n n n n

lim pn(x) =0, a.s. d:).
n
QL E=Di

THEOREM 6. Let f be a functional on H. Then f is a p-continuous charac-

teristic functional if and only if f is non-negative definite continuous on

H and for a (so that any) approximation sequence Pn in P

¢ (x) = Fp (CH(X)
n

converges in Ll(u) to ¢ such that Ex[¢(x)] = 1.

And then ¢ is the Radon-Nikodym derivative.
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Proof. Assume that f is a p-continuous characteristic functional with the

Radon-Nikodym derivative p. Then we have Cf = Fp so that by Theorem 4

?bncﬁf) = E_[p[B(P)]

which converges to p in Ll(u) as no,

Conversely assume that f satisfies the hypothesis of the theorem. Then
there exists a probability measure Gf on ((E*)a,C((E*)a,E*)) with the
characteristic functional f. Let dsf(x) = p(x)du(x) + dB(x) be the Lebesque

decomposition of Gf with respect to U, the extension of U to (E*)a. Then

we have

£€) = [t padim) + [l B amex)

£,(€) + £,(6), EeH.
By Theorem 4 ?b (Efl) converges to p in Ll(ﬁj. On the other hand, since
n
® is singular to u, by Lemma 5 either ?b (Efz) converges to zero in Ll(ﬁ) or
n
does not converge in Ll(ﬁ). By hypothesis Fﬁ (CE) = F} (Efl) + Fﬁ (Efz)
n n n

converges in Ll(ﬁ) so that converges to p and we have fp(x)dﬁ(x) =1 = Gf((E*)a).
Therefore 6 = 0 and the theorem is proved. Q. E e
Reformulating Theorem 6, we have the following proposition.

PROPOSITION 1. Let f be the characteristic functional of a Radon measure ul

on E. Then My <<u if and only if f is continuous on H and for a (so that any)

approximation sequence {Pn} in P

¢ (x) = éirg E-d(n)IEeXP[-Z—i?anx-Pnylz P %—lpnxlz]dul()’)’ neN ,

where d(n) is the dimension of an’ converges in Ll(u) to ¢ such that

E_[6()] = 1.

And then ¢ is the Radon-Nikodym derivative.
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Proof. Since we have

£ = [t Pa ), e,

Fubini's theorem implies that

Ty (GE)ies)
pn 2
. € 2
o =2i(P_%,B L) [PEI"_
= 212 C(an)I%[e C(P E)E(P E)]
: & 2 .
_ -i(P_x,P £)-=|P &| i(y,P £)
= linC(Px) fe ™ P 2m e ) fee N du )
€0

: -d 1 2 1 2
= lim € (n) fEexp[-——§|an— Pny| + §1an| ]dul(y).
e~>0 2e

Then Theorem 6 proves the proposition. Q.E.D.

Let An = {e }, neN, be a sequence of ONS in H. Then

n,l’en,2’°'°’en,d(n)

{An} is called an approximation sequence of ONS in E* iff we have An c E*,

i U .. .
An < b ,;» neN and the closed linear span of uA_ coincides with H. Let {An}

be an approximation sequence of ONS in E*. Then for every n the projection

din)
an - k=1 <x’en,k>en,k
is well-defined for all xeE and it is easy to show that {Pn} is an
approximation sequence in P. A slight modification of Proposition 1 gives

the following proposition.

PROPOSITION 2. Let ul be a Radon measure on E. Then ul << y if and only if

b,

there exists an approximation sequence of ONS in E*, say An = {

en,l’en,Z’””en,d(n)

neN, such that

d(n)
. -d(n) 1 2 2
é (x) = lim € exp[-—= {(1-e%)<x,e_ >
= >0 IE 2e2 kil i, &

2
= 2<x,en,k><y,en,k> + <y,en’k> ]dul(y)
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converges in Ll(u) to ¢ such that E[¢(x)] = 1.

And then ¢ 1s the Radon-Nikodym derivative.

Proof. Let Pn be the orthogonal projection of H onto the linear span of

An’ ne N. Then {Pn} is an approximation sequence in P and we have

1 2,1 2
—3lPyx - Py [T+ ZIPx]
2e
d§n)
1 2 2 2
= - - < > - 2< >
2¢? k=1 RS 28 e . A ek <y’en,k> * <y’en,k> b

which is well-defined for all x,y in E since An < E*, neN. Therefore, without
using the continuity of ﬂl(g) on H, from the hypothesis we can construct the
Radon-Nikodym derivative and the sufficiency is proved.
The necessity is proved as a simple corollary of Proposition 1.
Q.E.D.

We apply Proposition 2 to the Wiener measure.

Let B(t), 0<t<l, be the standard Brownian motion, X(t) be an arbitrary
continuous process on [0,1] vanishing at zero. Then B(t) and X(t) induce
the Wiener measure u and a Radon measure Hy on the real separable Banach
space C[0,1], the space of all continuous functions vanishing at zero,
respectively. The topological dual space of C[0,1] is u(0,1], the space of
all signed measures on (0,1].

Let

D5 0=t <t < < 1

5 n,0 S 'n,1 % o S tndm) T
be a decomposition of [0,1] such that Dn+1 is a refinement of Dn’ nelN. Let
§(t) be the Dirac measure concentrated on t [0,1],

1
- T2 -
K * |An’k| {8(t, ) G(tn,k_l)}, 1<k<d(n), neN,

where |An,kl = tn,k - tn,k-l’ and assume that I;m mix lAn,k' = 0. Then it is
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not difficult to show that An = {e e , neN, is an

n,1°%n,2°" " *n,d(n)?
approximation sequence of ONS in u(0,1]. As a corollary of Proposition 2

we have the following theorem.

THEOREM 7. Let B(t), 0<t<l, be the standard Brownian motion, X(t), 0<t<l,

be an arbitrary continuous process vanishing at zero, U be the Wiener measure

induced by B(t) and My be the Radon measure induced by X(t) on C[0,1]. Then

M, << p if and only if

1

d
¢ = lim e (M §n) L 2
" 2¢% k=1 |Pn,k

e+0

exp -

l{(l—ez)B(An’k) - 288, DX, )+ Xy P

: 1 B _ B _
converges in L™ (u) to ¢ such that E [¢] =1, where B(An,k) = B(tn,k) B(tn,k-l)’

X (A = X(t - X( 1<ksd(n), neN, and EX[ ] and EB[ ] are the

n,k) n,k) tn,k-l)’
expectations with respect to X(t) and B(t), respectively.

And then ¢ is the Radon-Nikodym derivative.
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CONVOLUTION.

Let v be a Radon measure on E and uxv be the convolution of p and v.
Then the characteristic functional is given by ;:;(E) = ﬁ(E)G(E) = C(E)V(E),
EeE*, where v is the characteristic functional of v. If u*v << u, then G(E)
is continuous on H. The aim of this paragraph is to give some sufficient

conditions on v for p*v << p.

LEMMA 6.

(1) 1If v=6x, the Dirac measure concentrated on xeE, then u*éx << p if and
only if xeH.

(2) 1If v(H)=1, then p*v << y.

(3) Assume that p*v << p and let EO be a full linear subspace of E. Then

we have v(EO) = 1.

Proof. (1) is well-known.

(2) Assume that v(H) = 1 and p(N)

0. Then by (1) u(N-x) = (u*éx)(N) =0

for all xeH so that we have

(W) (N) = [LH(N-x)dv(x)

1]
o]

[ (N-x)dv (x)

(3) Assume that pxv << py and let E. be a full linear subspace. Then we have

0

1= (uxv) (Ey) = [pH(Ey-x)dv(x),

so that v(Xe¢E: u(EO-x) = 1) = 1. Since EO is a linear subspace, we have
(Eo-x) n EO = p if xdEO. Therefore we have {xgE; u(EO-x) =1} ¢ EO and

v(EO) > v(xeE: u(EO-X) = 1) = le 0551 DR

By Lemma 6 our interest is reduced to the case where V(H) = 0.
Since v is bounded, Theorem 5 is applicable and we have the following

proposition as a corollary.
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PROPOSITION 3. Let v be a Radon measure on E. Then we have pu*v << p

if and only if v(§) is continuous on H and there exists an approximation

sequence {Pn} in P such that

(P x,P_y)-7|P y|?
o) = fpe BT avy,

converges in Ll(u).

And then the limit function is the Radon-Nikodym derivative.

Proof. Let b be an approximation sequence in P. Then, since {Pn} is

bounded so that integrable for every neIN, we have

6,0 = Fp v(x)
n
-i(P_x,P &) i(P_y,P &)
C(an)It[e W e T 7 dV(Y)}
(P x,P y)-3P y|?
Ee d\)()’) ]

which is p-integrable for C(&)G(g) is non-negative definite. Therefore Theorem

5 proves the theorem.
Q.E.D.

As in Proposition 2 we can modify Theorem 7 as follows. The proof is

similar to that of Proposition 2.

PROPOSITION 4. Let v be a Radon measure on E. Then we have u*v <<y if and

only if there exists an approximation sequence of ONS in E*, say

A = {e

}, neN, such that
n n,l GG

,€

n,2""’en,d(n)

n)
) 1 2
¢n(x) i IEexp [d;gl <x’en,k><y’ en,k> - §<y’en,k> :ld\)(Y)

converges in Ll(u).

And then the limit function is the Radon-Nikodym derivative.
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Proposition 4 gives the following theorem in a similar manner to the

proof of Theorem 7. We use the same notations with Theorem 7.

THEOREM 8. Let B(t), 0<t<l, be the standard Brownian motion, X(t), 0<t<l,

be an arbitrary continuous process vanishing at 0 and independent of {B(t)},

p be the Wiener measure induced by B(t) and v be the Radon measure induced

by X(t) on C[0,1]. Then B(t) + X(t), 0<t<l, induces puxv and we have

p*v << p if and only if there exists a sequence of decomposition of [0,1]

Dn: 0= tn’o < tn,l SO R < tn,k RPN < tn,d(n) =1
such that Dn+1 is a refinement of Dn’ nelN, lim mix IAn,kl = 0 and
din)
X 1 1, 2
= F [exp (k=1 B (B8, 10Xy ) = Xy ) })]

converges in Ll(u).

The following theorems are also applications of Proposition 4.

THEOREM 9. Let v be a Radon measure on E and assume that there exists a

CONS {ek} of H chosen from E* such that

n
up [ppexp (1 <vierertie2)avmav(y) < .

Then pu*v << u.

Proof. Obviously An = {el,ez,...,en}, nelN, is an approximation sequence of

ONS in E* so that Proposition 4 is applicable and we have

n
¢n(x) = fEexp (kzl<x,ek><y,ek> - %<y,ek>2)dv(y).

On the other hand, since {<x,ek>} is a standard Gaussian sequence so
that ¢n is a B(Pn)-martingale where Pn is the orthogonal projection of H to

the linear span of {el,ez,...,en}.
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Then
2
sup E [¢ (x) ]
n
n
= sup [ cexp (] <y.e><y’,e >Jdv(y)dv(y') < +e
n k=1
implies the uniform integrability of {¢n} and ¢ converges in Ll(u).

Q.E.D.

Before stating Theorem 10 we prove the following lemmas.

LEMMA 7. Let {Xk} be an independent real random sequence on (E,u) such that

n
the expectation I&[Xk(x)] =0, 1+ X, >0, a.s., keN, and Z = 1lim 1 (1+X ) > 0,
n k=1
= 1
a.s.. Then Z = 1 (1+X,) converges to Z in L™ (u).
=" ag k
1

Proof. Define Y, = (1+xk)7, keIN. Then we have E[Y,] < 1 and

o n

nE_[Y,]=1im 0 E [Y]

k=1 * K g kel X

n Y
. e 2
lim Ex[ It Yk] = lim Ex[Zn]
n k=1 n
i cle
E _[lim inf z2] = E_[Zz?] > o.
Xt n X

v

Therefore we have for every n,m ¢ N (n<m)
E [[z -Z |]2
x{"n "m
i 1 1 1,
E [|z2 - 22| |22 + z"-|J
x.'™n m' '“n m
L l‘Z
4E [|z"- - 22| ]
>3 [ m
11
8IE [1 - z"-z"—J
X nm

8{1 -E_[ T Y]]}
x n<k<m i

IN

8{1 - 10 Ex[Yk]} -0 as n,m > ®,
n<k<m
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LEMMA 8. Let {xk} be a real sequence such that x, > -1, keN. If

n
Ix, and sz converge, then Z = I (1+x,) converges to a positive number.
RE=—pe R K

Proof. Since Exk converges, we have lim X, = 0 so that we may assume kal <1,
k

keN . By the Taylor expansion we have

E log (1+xk) = E nz =t XE ;

Z Z (-1) nj _
N<k<M n=2 n

n
|

L lx
2 ™ Nekem K

e
B

(S1f=]

5 ) %-( y xi) > 0 as N,M > +
nx2 N<k<M

since Exz < +, Therefore
K

J log (1+x) = Jx, + ] 2 5D
k B k k n=2 k k

converges. QE: Dk

THEOREM 10. Let v be a Radon measure on E and assume that there exists a CONS

{ek} of H chosen from E* such that {<y,ek>} is an independent symmetric random

sequence on (E,v), and

o 1 2n iehe e, >2
M=) =] [pre e % du(y) < .

n=2 2™n! k

Then we have p*v ~ p.

Proof. Assume that the hypothesis is satisfied. Since {<y,ek>} are indepen-

dent, we have

n
1 2
¢n(x) s IE ki[lexp [<X)ek><)':ek> - §<yxek> ]dV(Y)

n
= 1 2
—kEIIE exp i<x’ek><y’ek> - '2"()’) ek> ]dv()’) ] neN.
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Define

= 1 2
Xk - IE exp [<x:ek><YJek> - §<YJek> ]dV(Y) -1, keN

Then {Xk} is an independent random sequence on (E,u) such that lix[xk(x)] =

and 1+Xk >0, a.s. (M), keIN. Therefore if we prove that

4 n

Il (1+Xk) > 0, a.s. (y), then by Lemma 7 ¢n = 1I (1+Xk) converges in Ll(u).

k=1 k=1

Lemma 8 it is enough to prove the convergences of XX, and ZXZ.

g & pX
In fact we have by the symmetricity of {<y,e >}
v 1 n n Y608
Xk = IE Z ET-<x,ek> <y,ek> e dv(y) -1
n=0
e
[+ -,<y.,e, >
_ 1 2n 2n_~277 %
=L T e Jpyee>Te 4wy
n=0
o 3<y, e, >2
1 1 2n 2770%
-y [ 5= <y,e > e dv(y)
]
HE0 E n! 22n k
, 4%<y,ek>2
= 7{<x,ekz l}fE<y,ek> e dv(y)
2n RS 2
o <x,e,> —2<y,e >
*7k 1 2n k
& T & = 5 } [ <y,e > e dv(y)
n=2 (2n) oM E k
= Vit Wy

Since {<x,ek>} is a standard Gaussian sequence on (E,u) and by Schwarz'

inequality we have

1 2
-3KYJe >
) IE<y,ek>2 e i dv(y) .
l<y e 52
Ry
S <y,e >t e K avy) = M < ae,
K E k
pX Vk and X Vi converge almost surely.

0

By
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On the other hand we have

2n 1
] i _—n_—) '[E<y’ek> e dv()’)
2 nl!

- 1 -
= 2% = fE<y,ek> e dv(y) € 2M < +o,

Therefore zwk converges absolutely a.s. (u) so that ZWﬁ converges almost surely.

_ 2 = 2 2
= ivk + zwk and ZXk Vk -+22kak + zwk converge

These imply that IX 2
k k k k k

K k

almost surely (u). Q.E.D

EXAMPLE 2. Let E = R R , the space of all real sequences, u is the product
measure of copies of N(0,1). Then we have H = 22. Let v be the product

measure of N(O,/V;), v, >0, keN. Then psv ~ y if Zvi < 4,
k

Remark that v(lz) = 0 if ka = +oo,

In fact let {ek} be the canonical CONS of 22. Then we have for every

k,n € N

00 -2<y’e >
I 1 fpcvie o™ e K av(y)
n=2 2 n!

- 2<y,€, > 2<y,e, > o v
=1 [le S > <y,ek>2}e Kavgy) = 21 - = -% : %
k=1 k=1 Y1V ©/InT

2 S
= § { 'k 2/1+vk i =i 2 2 e
2 - LYk

k=1 2/1+vk3 (VTrv + Dk

COROLLARY. Let v be a Radon measure on E and assume that there exists a CONS

{ek} of H chosen from E* such that {<y,ek>} is an independent symmetric

random sequence on (E,v) and

1
[ exp [%‘(E<y,ek>4)2]dv(y) < 4o,

Then u*v ~ u.
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Proof. We have

23n
P -1<y,e, >? <y, e, >
1 z f< 2n 2 k 1 .—k
y,e > e dviy) <} /1
nz2 2™nt k=1 K a2 M7 gL 2
4B
<y,e,> 12 z
1 k 1 4
=) = I{Z ‘4—} dv(y) < [ explz(J<y,e > ") 1dv(y) < +.
nz2 M T\ K

dv(y)

(s, + o,

n n

) where

™)

EXAMPLE 3. Let p be the same as in Example 2 and v = ]I
n
4
Ean < +»_,  Then uxv ~ .
n

v(lz) = 1 if and only if Zai < 4o,
n
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